]> pere.pagekite.me Git - homepage.git/blob - mypapers/drafts/cam-calibr/cam-calibr.tex
Generated.
[homepage.git] / mypapers / drafts / cam-calibr / cam-calibr.tex
1 \documentclass[a4paper,10pt]{article}
2 \usepackage{amsmath}
3 \title{Camera calibration}
4 \author{Petter Reinholdtsen $<$pere@td.org.uit.no$>$}
5 \date{2000-02-01}
6
7 \begin{document}
8 \maketitle
9
10 \section{Classical camera calibration theory}
11
12 In classical camera calibration theory, one needs to solve the
13 following matrix equation with 11 unknowns and 2N x 11 knowns.
14
15 \begin{equation*}
16 \setcounter{MaxMatrixCols}{20}
17 \begin{bmatrix}
18 X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1 X_1 & -u_1 Y_1 & -u_1 Z_1 \\
19 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1 X_1 & -v_1 Y_1 & -v_1 Z_1 \\
20 X_2 & Y_2 & Z_2 & 1 & 0 & 0 & 0 & 0 & -u_2 X_2 & -u_2 Y_2 & -u_2 Z_2 \\
21 0 & 0 & 0 & 0 & X_2 & Y_2 & Z_2 & 1 & -v_2 X_2 & -v_2 Y_2 & -v_2 Z_2 \\
22 . & . & . & . & . & . & . & . & . & . & . \\
23 . & . & . & . & . & . & . & . & . & . & . \\
24 . & . & . & . & . & . & . & . & . & . & . \\
25 . & . & . & . & . & . & . & . & . & . & . \\
26 . & . & . & . & . & . & . & . & . & . & . \\
27 X_N & Y_N & Z_N & 1 & 0 & 0 & 0 & 0 & -u_N X_N & -u_N Y_N & -u_N Z_N \\
28 0 & 0 & 0 & 0 & X_N & Y_N & Z_N & 1 & -v_N X_N & -v_N Y_N & -v_N Z_N
29 \end{bmatrix}
30 \cdot
31 \begin{bmatrix}
32 q_{11} \\ q_{12} \\ q_{13} \\ q_{14} \\
33 q_{21} \\ q_{22} \\ q_{23} \\ q_{24} \\
34 q_{31} \\ q_{32} \\ q_{33}
35 \end{bmatrix}
36 =
37 \begin{bmatrix}
38 u_1 \\ v_1 \\
39 u_2 \\ v_2 \\
40 . \\ . \\ . \\ . \\ . \\
41 u_N \\ v_N
42 \end{bmatrix}
43 \end{equation*}
44
45 To solve this equation, the pixel and real world coordinates of at
46 least six points must be known\footnote{Source: UWA Computer Vision
47 IT412 lecture notes} ($N >= 6$). $(X_i,Y_i,Z_i)$ is the world
48 coordinates with $(u_i,v_i)$ image coordinates. $q_{ij}$ is the unknown
49 camera calibration constants.
50
51
52 \section{Reconstruction of 3D coordinates}
53
54 In stereo vision, when the camera calibration for both cameras are
55 known ($C = [q_{ij}]$ and $C' = [q'_{ij}]$), the following equation
56 will give the real world coordinates $(X,Y,Z)$ of a common scene point
57 in projected into camera coordinates $(u,v)$ and $(u',v')$.
58
59 \begin{equation*}
60 \setcounter{MaxMatrixCols}{20}
61 \begin{bmatrix}
62 q_{11} - uq_{31} & q_{12} - uq_{32} & q_{13} - uq_{33} \\
63 q_{21} - vq_{31} & q_{22} - vq_{32} & q_{23} - vq_{33} \\
64 q'_{11} - u'q'_{31} & q'_{12} - u'q'_{32} & q'_{13} - u'q'_{33} \\
65 q'_{21} - v'q'_{31} & q'_{22} - v'q'_{32} & q'_{23} - v'q'_{33}
66 \end{bmatrix}
67 \begin{bmatrix}
68 X \\ Y \\ Z
69 \end{bmatrix}
70 =
71 \begin{bmatrix}
72 u - q_{14} \\
73 v - q_{24} \\
74 u' - q'_{14} \\
75 v' - q'_{24}
76 \end{bmatrix}
77 \end{equation*}
78 \end{document}