1 \documentclass[a4paper,
10pt
]{article
}
3 \title{Camera calibration
}
4 \author{Petter Reinholdtsen $<$pere@td.org.uit.no$>$
}
10 \section{Classical camera calibration theory
}
12 In classical camera calibration theory, one needs to solve the
13 following matrix equation with
11 unknowns and
2N x
11 knowns.
16 \setcounter{MaxMatrixCols
}{20}
18 X_1 & Y_1 & Z_1 &
1 &
0 &
0 &
0 &
0 & -u_1 X_1 & -u_1 Y_1 & -u_1 Z_1 \\
19 0 &
0 &
0 &
0 & X_1 & Y_1 & Z_1 &
1 & -v_1 X_1 & -v_1 Y_1 & -v_1 Z_1 \\
20 X_2 & Y_2 & Z_2 &
1 &
0 &
0 &
0 &
0 & -u_2 X_2 & -u_2 Y_2 & -u_2 Z_2 \\
21 0 &
0 &
0 &
0 & X_2 & Y_2 & Z_2 &
1 & -v_2 X_2 & -v_2 Y_2 & -v_2 Z_2 \\
22 . & . & . & . & . & . & . & . & . & . & . \\
23 . & . & . & . & . & . & . & . & . & . & . \\
24 . & . & . & . & . & . & . & . & . & . & . \\
25 . & . & . & . & . & . & . & . & . & . & . \\
26 . & . & . & . & . & . & . & . & . & . & . \\
27 X_N & Y_N & Z_N &
1 &
0 &
0 &
0 &
0 & -u_N X_N & -u_N Y_N & -u_N Z_N \\
28 0 &
0 &
0 &
0 & X_N & Y_N & Z_N &
1 & -v_N X_N & -v_N Y_N & -v_N Z_N
32 q_
{11} \\ q_
{12} \\ q_
{13} \\ q_
{14} \\
33 q_
{21} \\ q_
{22} \\ q_
{23} \\ q_
{24} \\
34 q_
{31} \\ q_
{32} \\ q_
{33}
40 . \\ . \\ . \\ . \\ . \\
45 To solve this equation, the pixel and real world coordinates of at
46 least six points must be known
\footnote{Source: UWA Computer Vision
47 IT412 lecture notes
} ($N >=
6$). $(X_i,Y_i,Z_i)$ is the world
48 coordinates with $(u_i,v_i)$ image coordinates. $q_
{ij
}$ is the unknown
49 camera calibration constants.
52 \section{Reconstruction of
3D coordinates
}
54 In stereo vision, when the camera calibration for both cameras are
55 known ($C =
[q_
{ij
}]$ and $C' =
[q'_
{ij
}]$), the following equation
56 will give the real world coordinates $(X,Y,Z)$ of a common scene point
57 in projected into camera coordinates $(u,v)$ and $(u',v')$.
60 \setcounter{MaxMatrixCols
}{20}
62 q_
{11} - uq_
{31} & q_
{12} - uq_
{32} & q_
{13} - uq_
{33} \\
63 q_
{21} - vq_
{31} & q_
{22} - vq_
{32} & q_
{23} - vq_
{33} \\
64 q'_
{11} - u'q'_
{31} & q'_
{12} - u'q'_
{32} & q'_
{13} - u'q'_
{33} \\
65 q'_
{21} - v'q'_
{31} & q'_
{22} - v'q'_
{32} & q'_
{23} - v'q'_
{33}